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Main Contributions

In this work, we carry out multifaceted investigations on fine-tuning and adapters for
summarization tasks with varying complexity:

1. languages involved: monolingual, cross-lingual, and multilingual;
2. data availability: high, medium, low, and scarce resources;
3. knowledge being transferred: languages, domains, and tasks.

In our experiments, we find that:

1. fine-tuning a pre-trained language model is superior to using adapters;
2. the performance gap positively correlates with the amount of training data used;
3. adapters exceed fine-tuning under extremely low-resource conditions.

Methodology

Our aim is to study two fine-tuning variants for summarization under several settings
using a PLM: the fine-tuning paradigm, and the adapter strategy.

MBART-FT initializes a mBART model from a pre-trained checkpoint, then trains and up-
dates the whole model on a summarization dataset. We provide a cross-lingual demon-
stration for our model in Figure 1.
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Figure 1. An illustration of mMBART-FT for cross-lingual summarization from English to
Chinese.

MmBART-Adapt also initializes a mBART model from a pre-trained checkpoint, with adapter
modules then inserted into the model. We experiment with two adapter variants: se-
quential and parallel, illustrated in Figure 2.
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Figure 2. An illustration of adapter variants.

Results for Domain Experiments

We conduct experiments on domain adaptation, which is typically tackled using the same
pre-training then fine-tuning paradigm.

In our setting, we adapt CNN/Daily Mail to XL-Sum, both in English, with various data
sizes. In addition to the XL-Sum dataset, which is in the news domain, we also experi-
mented with adapting to the BookSum dataset, a collection of narratives from the litera-
ture domain. We provide results in Table 1.

. . BART-FT BART-Adapt

Domain Data Size 7 5 ST 57 9 =1
original | 306.5k | 3448 | 14.73 | 28.93 32.94 1346 | 2/.60
medium | 30.65k | 30.63 | 11.38 | 25.31 | 30.15  11.10 @ 25.05
XL-Sum small 3065 | 27.27 891 2227 2732 8.79 | 22.20
tiny 307 2410 | 6.52 | 19.38 | 2429 | 641 | 19.50
MICro 31 1 19.69 426 | 15.73  20.74  4.65 | 16.45
BookSum 111.6k 20.27 | 401 @ 1550  20.22 | 3.95 | 15.57

Table 1. Results for domain adaptation from CNN/Daily Mail to XL-Sum/BookSum.
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Results for Language Experiments

We provide results on high-recourse cross-lingual summarization on NCLS in Table 2.
Table 3 lists results on medium and low-recourse cross-lingual summarization on Wik-
iLingua. We also provide results of both monolingual (Table 4) and multilingual (Table 5)
summarization on XL-Sum.

Table 4.
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Table 2. High-resource, NCLS.
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Table 3. Medium and low-resource, WikiLingua.

Monolingual
Lang. MBART-FT MBART-Adapt
R1 R2 RL R1 R2 RL
ou | 20.23 643 17.67 19.20 595 | 1696
fr 33.29 | 13.68 | 25.13 | 32.3/7 | 13.02 @ 24.73
ne | 2406 | 9.05 | 21.62 | 23.31 | 836 21.01
ko |19.73 | 9.12 | 18.07 1905 9.24 | 1/.73
SI 25.59 | 12.25 ] 21.92 2499 | 12.30 21.44
Results for low-resource monolingual summarization on XL-Sum.
Multilingual
Lang. MBART-FT MBART-Adapt
R1 R2 RL R1 R2 RL
ou | 20.18  6.96 18.09 2012 6.82 | 1/.99
fr 33.53 | 14.37 | 26.11 33.44  14.01 @ 25.63
ne | 24.70 | 9.52 | 22.23 | 23.26 855  20.94
ko | 1/.73 | 876 | 16.2/7 | 1882 8.12 17.23
SI 26.95 | 13.51 | 22.36 25.68  12.69  21.80

Table 5. Results for low-resource multilingual summarization on XL-Sum.

Results for Task Transfer

In addition to experiments with the fine-tuning paradigm on the subject of language and
domain adaption, we also experiment with adapting a news summarization model to di-
alogue summarization. We report the experiment results in Table 6.

Table 6. Results for tas

Task Data Size Model R1 R2 RL
DialogSum | 125K | gupt niapt 4704 | 2457 | 3656
wsan | 147 | ST 952 2491 a0
kK adaption from CNN/Daily Mail to DialogSum and SAMSum.

Effect of Data Availability on Performance

We observe that the amount of training data affects the performance gap between the
two fine-tuning and adapters. We plot the percentage change in ROUGE performance
(between those of fine-tuning and those of adapters) against the training size (log-scale)

In Figure 3.
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Figure 3. The effect of the training data size on ROUGE difference between the
fine-tuning and adapter strategy.
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