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Overview

This work evaluates the temporal grounding of large language models (LLMs) like

GPT-4 and LLaMA by probing their ability to reason about textual narratives

involving events.

It tests three key aspects: models’ commonsense knowledge about events, their

ability to order events on a timeline, and their ability to satisfy temporal

constraints.

The study utilizes three benchmarks - McTACO, CaTeRS, and TempEvalQA-Bi - to

evaluate each of the three aspects respectively.

Results show that LLMs struggle significantly on all three temporal reasoning

abilities compared to humans and specialized models, with recent techniques like

few-shot prompting, scaling, and chain-of-thought prompting providing only

limited improvements.

Tasks for Evaluation

This study proposes a framework to evaluate temporal grounding by decomposing it

into three fundamental abilities. We provide an illustration using examples below. We

highlight wrong predictions with underline.

Reference: (B) For years; (D) A year
GPT-4: (B) For years 

Reference: <E1> Tim drank a little 
too much. <E2> His golf game was 
awful.
GPT-4: <E2> His golf game was 
awful. <E1> Tim drank a little too 
much.

Before-Ans-Gold: Yes
After-Ans-Gold: No
Before-Ans-GPT-4: Yes
After-Ans-GPT-4: Yes

LLMs

Context: Safti admits his love for Edwina to Lord Esketh, who is now 
sympathetic toward this good man's plight.
Question: How long has Safti been in love with Edwina?
Candidates: (A) 10 seconds; (B) For years; (C) For hours; (D) A year

Un-ordered Events: His golf game was awful. Tim drank a little too 
much.

Events:  […] all the more so when even the Obama administration 
joined the West in signaling approval. […] Something had to be done, 
and an occasion arose on June 12, […]
Before-Q: Did the Obama administration join the West before June 
12?
After-Q: Did the Obama administration join the West after June 12?
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The expectation is that a truly grounded model with temporal understanding should

perform well across all three abilities.

Evaluation Setup

Three benchmarks are used to evaluate the temporal grounding abilities of LLMs:

1. McTACO - A multiple-choice question answering dataset to assess commonsense

temporal knowledge across categories like event duration, ordering, time,

frequency, and stationarity.

2. CaTeRS - An event ordering task where models must arrange events from a

narrative into the correct chronological sequence by reasoning over causal and

temporal cues.

3. TempEvalQA-Bi - A binary question-answering dataset derived from TempEvalQA

to test self-consistency. Models must maintain mutual exclusivity between

contradictory “before/after” relations for event pairs.

Multiple strategies are employed based on model type and benchmark format:

Multiple-choice QA: LLMs generate answers by ranking provided candidates.

Sequence-to-Sequence: For event ordering, models take events as input and

temporally sort them as output.

Yes/No QA: Models predict yes/no by ranking likelihoods or through greedy

decoding.

Materials

(a) Paper (b) Github Repo

Main Results

McTACO CaTeRS

Models
Zero-shot Few-shot

Strict Acc. F1 Strict Acc. F1 Pair Acc.

RoBERTa 43.62 72.34 - - -

TemporalBART - - - - 77.06

Human 75.80 - - - -

GPT-4 28.45 35.88 50.15 65.27 60.51

text-davinci-003 26.05 48.30 33.56 65.04 53.47

LLaMA-7B 14.392.82 35.3015.18 20.172.46 22.395.07 3.764.58
Alpaca-7B 21.755.22 52.179.69 30.0310.11 44.1018.36 10.374.91
LLaMA-13B 15.673.42 36.5914.69 24.376.08 34.9919.01 5.275.51
LLaMA-33B 17.243.36 33.2015.07 29.704.79 47.578.36 14.3810.77
LLaMA-65B 18.145.63 46.836.51 26.1312.15 47.842.65 21.0210.27

LLaMA-2-7B 11.161.55 42.5512.29 21.743.83 32.9417.56 5.852.06
LLaMA-2-13B 15.693.49 39.3515.55 29.750.69 43.212.51 16.265.75
LLaMA-2-70B 19.123.58 33.519.75 27.772.35 37.203.71 21.618.39
LLaMA-2-chat-7B 20.743.45 28.734.48 23.003.56 31.5010.18 26.322.09
LLaMA-2-chat-13B 22.220.13 31.679.38 28.901.04 41.635.97 30.273.02
LLaMA-2-chat-70B 20.842.08 26.425.98 27.184.9 34.377.75 30.5521.87

Table 1. Average model performance (standard deviations as subscripts). Left: McTACO for evaluating

temporal commonsense reasoning in LLMs. Right: CaTeRS results for few-shot prompting. Pair Acc.

stands for pairwise accuracy.

Models
Zero-shot Few-shot

Acc. (↑) Inc. (↓) Acc. (↑) Inc. (↓)

GPT-4 64.29 31.25 67.41 27.23

text-davinci-003 27.68 69.64 33.93 62.05

text-davinci-002 16.52 77.83 36.16 60.71

davinci 14.73 79.02 13.39 79.91

LLaMA-7B 3.422.46 94.793.64 3.270.51 94.941.57
LLaMA-Alpaca-7B 10.122.29 83.635.08 13.106.00 77.237.37
LLaMA-13B 0.600.68 97.773.49 0.600.68 99.250.51
LLaMA-33B 1.341.34 98.221.18 14.737.74 83.339.43
LLaMA-65B 14.145.17 83.486.14 31.991.57 60.424.47

LLaMA-2-7B 0.150.26 99.850.26 11.900.52 85.122.62
LLaMA-2-13B 5.653.3 92.863.81 13.697.63 83.638.00
LLaMA-2-70B 6.552.01 92.413.13 29.762.73 65.772.02
LLaMA-2-chat-7B 13.847.63 83.337.82 23.512.20 70.090.77
LLaMA-2-chat-13B 22.924.03 72.915.58 31.693.22 62.953.57
LLaMA-2-chat-70B 38.543.04 58.032.36 46.421.18 48.962.01

Table 2. Average model performance (standard deviations as subscripts) evaluated on our curated

bi-directional TempEvalQA benchmark. Acc. and Inc. stand for accuracy and the percentage of

inconsistent predictions. (↑)/(↓) indicate that higher / lower values are better, respectively.
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(a) Scaling the model parameters.
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(b) Scaling the examples of in-context learning.

Figure 2. The performance curve for scaling experiments. We report the strict

accuracy for McTACO, pairwise accuracy for CaTeRS and accuracy for

TempEvalQA-Bi. (a): The error bars show the standard deviation over three prompt

templates. (b): The baseline for McTACO is Human, and for CaTeRS is

TemporalBART.
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Figure 3. Comparison between

chain-of-thought prompting and the

standard few-shot prompting on

TempEvalQA-Bi for all tested LLMs.
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Figure 4. Density plot of the odds ratio under several LLMs (rows) for differently

ordered paraphrases in CaTeRS (orange) and TempEvalQA-Bi (green). The odds ratio

represents the likelihood of temporally ordered sequences compared to their

permuted counterparts.


