¹Yifu Qiu, ¹Zheng Zhao, ¹Yftah Ziser, ²Anna Korhonen, ¹Edoardo M. Ponti, ¹Shay B. Cohen THE UNIVERSITY of EDINBURGH

¹Institute for Language, Cognition and Computation, University of Edinburgh

Are Large Language Models Temporally Grounded?

²Language Technology Lab, University of Cambridge

Overview

- This work evaluates the temporal grounding of large language models (LLMs) like GPT-4 and LLaMA by probing their ability to reason about textual narratives involving events.
- It tests three key aspects: models' commonsense knowledge about events, their ability to order events on a timeline, and their ability to satisfy temporal constraints.
- The study utilizes three benchmarks McTACO, CaTeRS, and TempEvalQA-Bi to evaluate each of the three aspects respectively.
- Results show that LLMs struggle significantly on all three temporal reasoning abilities compared to humans and specialized models, with recent techniques like few-shot prompting, scaling, and chain-of-thought prompting providing only limited improvements.

Tasks for Evaluation

Materials

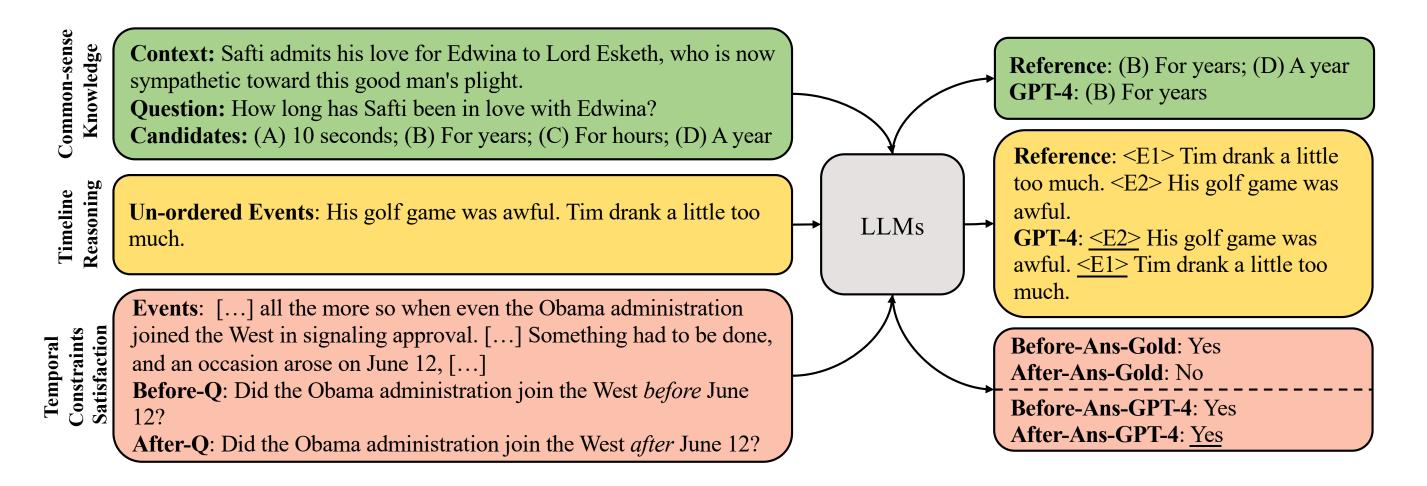
(a) Paper

(b) Github Repo

Main Results

		CaTeRS			
Models	Zero-shot		Few-shot		
1 TOUCIS	Strict Acc.	F1	Strict Acc.	F1	Pair Acc.
RoBERTa	43.62	72.34	-	_	-
TemporalBART	-	_	-	_	77.06
Human	75.80	-	-	-	-
GPT-4	28.45	35.88	50.15	65.27	60.51
text-davinci-003	26.05	48.30	33.56	65.04	53.47
LLaMA-7B	14.392.82	35.30 _{15.18}	20.172.46	22.39 _{5.07}	3.76 _{4.58}
Alpaca-7B	21.75 _{5.22}	52.17 _{9.69}	30.03 _{10.11}	$44.10_{18.36}$	10.374.91
LLaMA-13B	15.67 _{3.42}	36.59 _{14.69}	24.37 _{6.08}	34.99 _{19.01}	$5.27_{5.51}$
LLaMA-33B	17.24 _{3.36}	33.2015.07	29.70 _{4.79}	47.57 _{8.36}	14.38 _{10.77}
LLaMA-65B	$18.14_{5.63}$	$46.83_{6.51}$	26.13 _{12.15}	$47.84_{2.65}$	21.02 _{10.27}
LLaMA-2-7B	11.16 _{1.55}	42.55 _{12.29}	21.74 _{3.83}	32.94 _{17.56}	5.85 _{2.06}
LLaMA-2-13B	15.69 _{3.49}	39.35 _{15.55}	29.75 _{0.69}	$\textbf{43.21}_{2.51}$	$16.26_{5.75}$
LLaMA-2-70B	19.123.58	$33.51_{9.75}$	27.77 _{2.35}	37.20 _{3.71}	21.61 _{8.39}
LLaMA-2-chat-7B	20.74 _{3.45}	28.734.48	23.00 _{3.56}	31.50 _{10.18}	26.322.09
LLaMA-2-chat-13B	22.22 _{0.13}	31.67 _{9.38}	28.901.04	$41.63_{5.97}$	30.27 _{3.02}
LLaMA-2-chat-70B	20.842.08	$26.42_{5.98}$	$27.18_{4.9}$	34.37 _{7.75}	30.55 _{21.87}

This study proposes a framework to evaluate temporal grounding by decomposing it into three fundamental abilities. We provide an illustration using examples below. We highlight wrong predictions with <u>underline</u>.



The expectation is that a truly grounded model with temporal understanding should perform well across all three abilities.

Evaluation Setup

Three benchmarks are used to evaluate the temporal grounding abilities of LLMs:

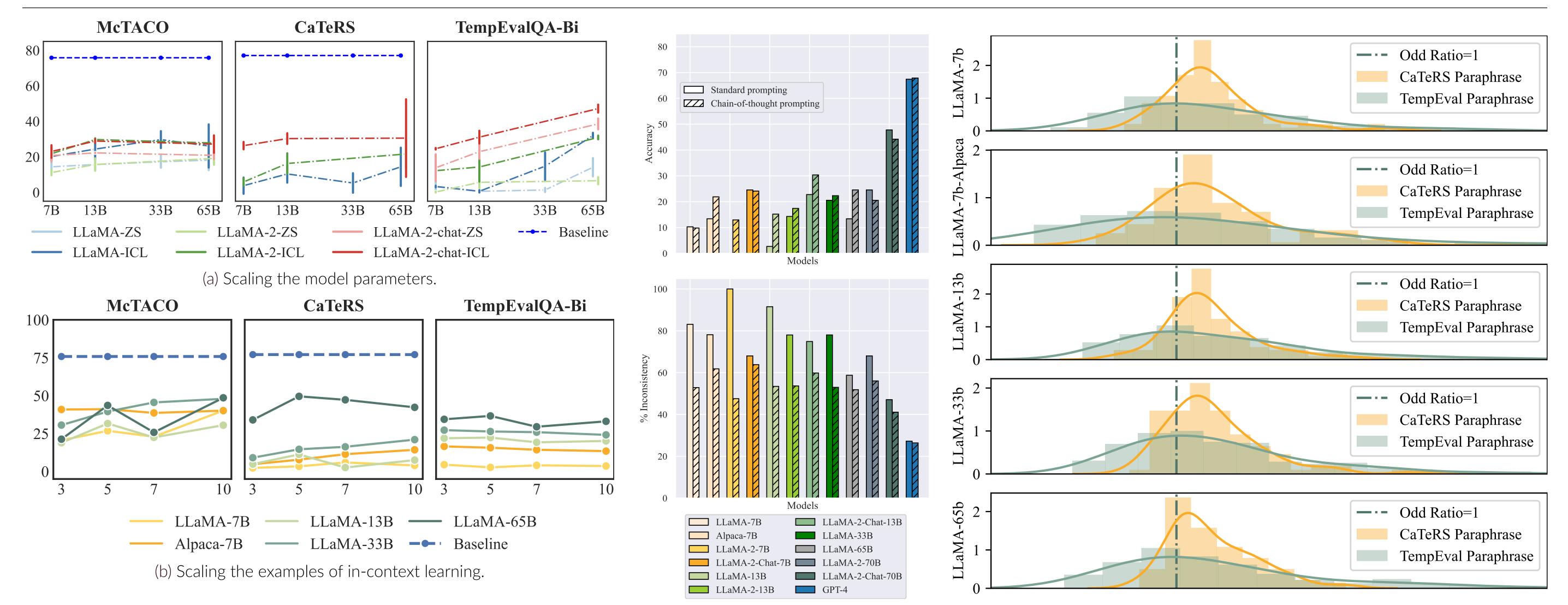
- 1. McTACO A multiple-choice question answering dataset to assess commonsense temporal knowledge across categories like event duration, ordering, time, frequency, and stationarity.
- 2. CaTeRS An event ordering task where models must arrange events from a narrative into the correct chronological sequence by reasoning over causal and temporal cues.

Table 1. Average model performance (standard deviations as subscripts). Left: McTACO for evaluating temporal commonsense reasoning in LLMs. Right: CaTeRS results for few-shot prompting. Pair Acc. stands for pairwise accuracy.

Models	Zero	-shot	Few-shot		
	Acc. (↑)	Inc. (↓)	Acc. (↑)	Inc. (↓)	
GPT-4 text-davinci-003 text-davinci-002 davinci	64.29 27.68 16.52 14.73	31.25 69.64 77.83 79.02	67.41 33.93 36.16 13.39	27.23 62.05 60.71 79.91	
LLaMA-7B LLaMA-Alpaca-7B LLaMA-13B LLaMA-33B LLaMA-65B	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$97.77_{3.49}$ $98.22_{1.18}$	$\begin{array}{c} 13.10_{6.00} \\ 0.60_{0.68} \end{array}$	$\begin{array}{c} 94.94_{1.57} \\ 77.23_{7.37} \\ 99.25_{0.51} \\ 83.33_{9.43} \\ \textbf{60.42}_{4.47} \end{array}$	
LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B LLaMA-2-chat-7B LLaMA-2-chat-13B LLaMA-2-chat-70B	$5.65_{3.3} \\ 6.55_{2.01} \\ 13.84_{7.63} \\ 22.92_{4.03}$	$\begin{array}{c} 92.86_{3.81} \\ 92.41_{3.13} \\ 83.33_{7.82} \\ 72.91_{5.58} \end{array}$	$\begin{array}{c} 11.90_{0.52} \\ 13.69_{7.63} \\ 29.76_{2.73} \\ 23.51_{2.20} \\ 31.69_{3.22} \\ \textbf{46.42}_{1.18} \end{array}$	$\begin{array}{c} 83.63_{8.00} \\ 65.77_{2.02} \\ 70.09_{0.77} \\ 62.95_{3.57} \end{array}$	

- 3. TempEvalQA-Bi A binary question-answering dataset derived from TempEvalQA to test self-consistency. Models must maintain mutual exclusivity between contradictory "before/after" relations for event pairs.
- Multiple strategies are employed based on model type and benchmark format:
- **Multiple-choice QA**: LLMs generate answers by ranking provided candidates.
- Sequence-to-Sequence: For event ordering, models take events as input and temporally sort them as output.
- Yes/No QA: Models predict yes/no by ranking likelihoods or through greedy decoding.

Table 2. Average model performance (standard deviations as subscripts) evaluated on our curated bi-directional TempEvalQA benchmark. Acc. and Inc. stand for accuracy and the percentage of inconsistent predictions. $(\uparrow)/(\downarrow)$ indicate that higher / lower values are better, respectively.



Analysis

Figure 2. The performance curve for scaling experiments. We report the strict accuracy for McTACO, pairwise accuracy for CaTeRS and accuracy for TempEvalQA-Bi. (a): The error bars show the standard deviation over three prompt templates. (b): The baseline for McTACO is Human, and for CaTeRS is TemporalBART.

Figure 3. Comparison between chain-of-thought prompting and the standard few-shot prompting on TempEvalQA-Bi for all tested LLMs.

Figure 4. Density plot of the odds ratio under several LLMs (rows) for differently ordered paraphrases in CaTeRS (orange) and TempEvalQA-Bi (green). The odds ratio represents the likelihood of temporally ordered sequences compared to their permuted counterparts.