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Overview Materials

= This work evaluates the temporal grounding of large language models (LLMs) like
GPT-4 and LLaMA by probing their ability to reason about textual narratives
iInvolving events.

= |t tests three key aspects: models’ commonsense knowledge about events, their
ability to order events on a timeline, and their ability to satisfy temporal
constraints.

= The study utilizes three benchmarks - McTACO, CaleRS, and TempEvalQA-BI - to
evaluate each of the three aspects respectively.
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The expectation is that a truly grounded model with temporal understanding should
perform well across all three abilities.

Table 1. Average model performance (standard deviations as subscripts). Left: McTACO for evaluating
temporal commonsense reasoning in LLMs. Right: CaleRS results for few-shot prompting. Pair Acc.
stands for pairwise accuracy.
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= Yes/No QA: Models predict yes/no by ranking likelihoods or through greedy

Table 2. Average model performance (standard deviations as subscripts) evaluated on our curated
bi-directional TempEvalQA benchmark. Acc. and Inc. stand for accuracy and the percentage of

decoding. inconsistent predictions. (1)/({) indicate that higher / lower values are better, respectively.
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Figure 2. The performance curve for scaling experiments. We report the strict
accuracy for McTACO, pairwise accuracy for CaleRS and accuracy for
TempEvalQA-Bi. (a): The error bars show the standard deviation over three prompt
templates. (b): The baseline for McTACO is Human, and for CaTeRS is
TemporalBART.

Figure 4. Density plot of the odds ratio under several LLMs (rows) for differently
ordered paraphrases in CaleRS (orange) and TempEvalQA-Bi (green). The odds ratio
represents the likelihood of temporally ordered sequences compared to their
permuted counterparts.

Figure 3. Comparison between
chain-of-thought prompting and the
standard few-shot prompting on
TempEvalQA-Bi for all tested LLMs.




