

What Is That Talk About? A Video-to-Text Summarization Dataset for **Scientific Presentations**

Donggi Liu $^{\Omega}$, Chenxi Whitehouse $^{\Delta}$, Xi Yu $^{\Omega}$, Louis Mahon $^{\Theta}$, Rohit Saxena $^{\Theta}$, Zheng Zhao $^{\Theta}$, Yifu Qiu $^{\Theta}$, Mirella Lapata $^{\Theta}$, Vera Demberg $^{\Omega\Psi}$ $^{\Omega}$ Saarland University, $^{\Psi}$ Max Planck Institute for Informatics

[∆]University of Cambridge, [⊕]University of Edinburgh

Introduction

We propose VISTA, the first multimodal summarization dataset consisting of scientific presentation videos paired with paper abstracts.

Despite their impressive performance on diverse tasks, large language models (LMs) [...], implying the difficulty of encoding a wealth of world knowledge in their parameters. This paper aims to understand LMs' strengths and ...], by [...]. We find that LMs struggle with ess popular factual knowledge, and [...]. Scaling, on the other hand, mainly improve memorization of popular knowledge, and fails [...]. Based on those findings, we devise a new method for retrievalaugmentation[...] memories when necessary

Figure 1. VISTA pairs presentation videos with paper abstracts

Plan-based Framework

- Problem: SOTA LMMs show problems with structural grounding -> incoherence, hallucination
- Solution: Introduce intermediate plan p as question sequence $\{q_1,q_2,\ldots,q_m\}$
- Training & Inference: Plan Generation (PG) and Summary Generation (SG) are trained separately on (v, p) and ([v, p], s), where v is the input and s is the summary. At inference, PG predicts \hat{p} for v, and SG generates the summary from $[v; \hat{p}]$

Figure 2. Plan extraction

The VISTA Dataset

- Scale: 18,599 video-abstract pairs from leading AI conferences
- Sources: ACL Anthology (ACL, EMNLP, NAACL, EACL), ICML, NeurIPS (2020-2024)
- Quality Control: Manual validation (500 samples) + automated assessment (GPT-o1, All samples)

Figure 3. Dataset attribute distributions

- Videos: Avg. 6.76 minutes, 16.36 shots per video
- Summaries: Avg. 192.62 tokens, 7.19 sentences per summary
- Complexity: Dependency tree depth 6.02, TTR 0.62

Main Results

- Plan-based superiority: Planning model outperforms all baselines
- Modality ranking: Video + Audio > Video > Audio > Transcript
- Modality interplay: Video excels alone (rich cues), audio adds timing info, but transcripts are often noisy and hinder alignment
- Planning benefit: Planning also boosts summarization for textand audio-only models **Full Fine-tune**

Figure 4. Model performance comparison

Human and GPT-01 Evaluation

- Multi-aspect assessment: Faithfulness, Relevance, Informativeness, Conciseness, Coherence
- Human superiority: Humans consistently outperform all models across all evaluation criteria
- Plan-based advantage: Our proposed model achieves best performance among other models in both evaluations

Figure 5. Human and GPT-o1 evaluation results

Conclusion

- Dataset: VISTA provides 18,599 video-summary pairs, a novel large-scale dataset for scientific video-to-text summarization
- Benchmarking: Comprehensive evaluation of 13+ SOTA LMMs across multiple settings (zero-shot, QLoRA, full fine-tuning)
- Method: Plan-based summarization improves quality and factual accuracy over strong multimodal baselines

dongqi.me/