To Adapt or to Fine-tune: A Case Study on Abstractive Summarization

Zheng Zhao Pinzhen Chen

School of Informatics, University of Edinburgh {zheng.zhao, pinzhen.chen}@ed.ac.uk

Main Contributions

In this work, we carry out multifaceted investigations on fine-tuning and adapters for summarization tasks with varying complexity:

- 1. languages involved: monolingual, cross-lingual, and multilingual;
- 2. data availability: high, medium, low, and scarce resources;
- 3. knowledge being transferred: languages, domains, and tasks.

In our experiments, we find that:

fine-tuning a pre-trained language model is superior to using adapters;
 the performance gap positively correlates with the amount of training data used;

Results for Language Experiments

We provide results on high-recourse cross-lingual summarization on NCLS in Table 2. Table 3 lists results on medium and low-recourse cross-lingual summarization on WikiLingua. We also provide results of both monolingual (Table 4) and multilingual (Table 5) summarization on XL-Sum.

	Lang.	ſſ	BART-F	Т	mBART-Adapt			
		R1	R2	RL	R1	R2	RL	
	zh→en	46.46	30.18	42.26	41.41	22.73	36.56	
	en→zh	45.22	22.49	34.38	40.74	16.83	29.27	

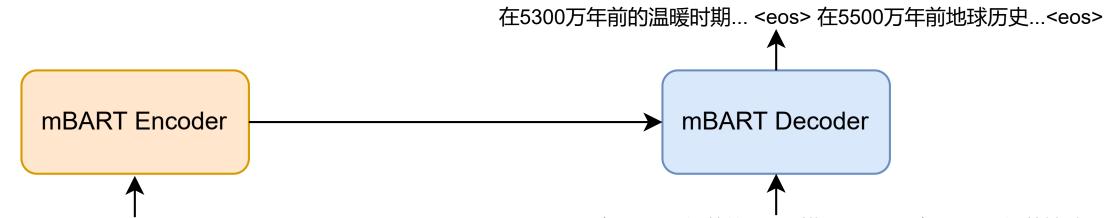
Table 2. High-resource, NCLS.

3. adapters exceed fine-tuning under extremely low-resource conditions.

Methodology

Our aim is to study two fine-tuning variants for summarization under several settings using a PLM: the *fine-tuning* paradigm, and the *adapter* strategy.

mBART-FT initializes a mBART model from a pre-trained checkpoint, then trains and updates the whole model on a summarization dataset. We provide a cross-lingual demonstration for our model in Figure 1.



Hotter summers, melting... <eos> And now scientists... <eos> <en_XX> <zh_CN> 在5300万年前的温暖时期... <eos> 在5500万年前地球历史... <eos>

Figure 1. An illustration of mBART-FT for cross-lingual summarization from English to Chinese.

mBART-Adapt also initializes a mBART model from a pre-trained checkpoint, with adapter modules then inserted into the model. We experiment with two adapter variants: sequential and parallel, illustrated in Figure 2.

	Lang.	r	BART-F	Т	mBART-Adapt			
		R1	R2	RL	R1	R2	RL	
	en→ar	25.85 7.35		21.01	24.68	7.26	20.40	
	en→vi	33.63	15.17	26.65	30.98	13.94	24.59	
	en→ja	35.70	12.34	28.34	34.06	11.43	27.08	
	ja→en	35.24	12.38	28.09	33.14	11.54	26.46	

Table 3. Medium and low-resource, WikiLingua.

	Monolingual							
Lang.	n	mBART-FT			mBART-Adapt			
	R1	R2	RL	R1	R2	RL		
gu	J 20.23 6.43		17.67	19.20	5.95	16.96		
fr	33.29	13.68	25.13	32.37	13.02	24.73		
ne	24.06	9.05	21.62	23.31	8.36	21.01		
ko	19.73	9.12	18.07	19.05	9.24	17.73		
si	25.59	12.25	21.92	24.99	12.30	21.44		

 Table 4. Results for low-resource monolingual summarization on XL-Sum.

	Multilingual							
Lang.	m	BART-F	Т	mBART-Adapt				
	R1	R2	RL	R1	R2	RL		
gu	20.18	6.96	18.09	20.12	6.82	17.99		
fr	33.53	14.37	26.11	33.44	14.01	25.63		
ne	24.70	9.52	22.23	23.26	8.55	20.94		
ko	17.73	8.76	16.27	18.82	8.12	17.23		

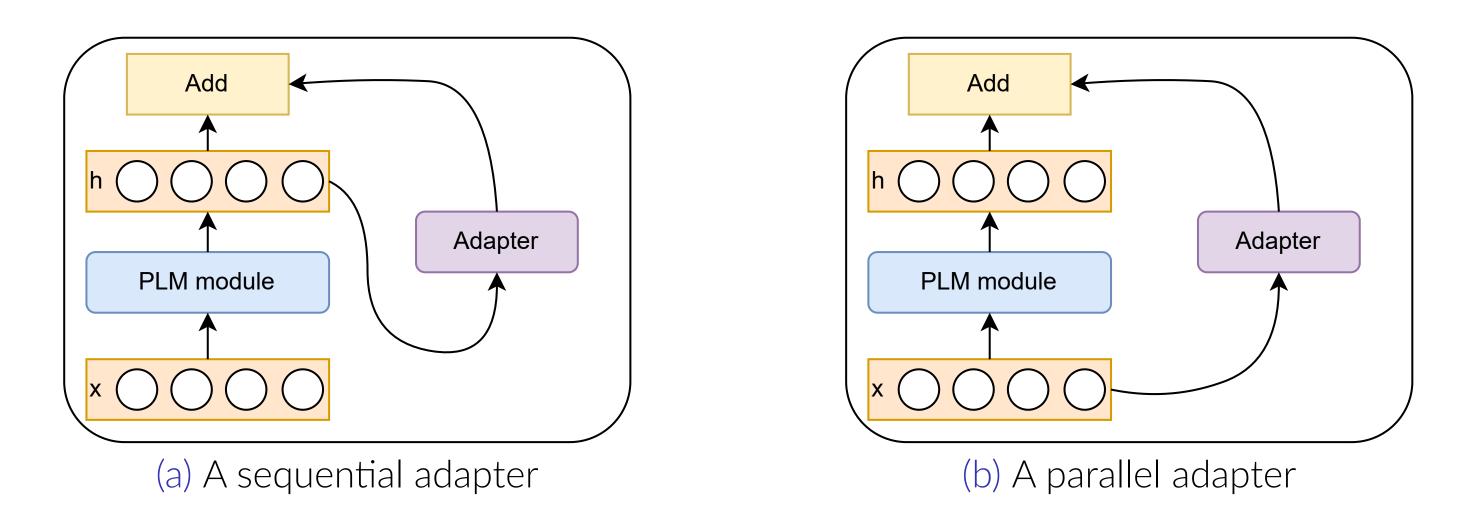


Figure 2. An illustration of adapter variants.

Results for Domain Experiments

We conduct experiments on domain adaptation, which is typically tackled using the same pre-training then fine-tuning paradigm.

In our setting, we adapt CNN/Daily Mail to XL-Sum, both in English, with various data sizes. In addition to the XL-Sum dataset, which is in the news domain, we also experimented with adapting to the BookSum dataset, a collection of narratives from the literature domain. We provide results in Table 1.

Domain	Data Size		BART-FT			BART-Adapt		
Domain			R1	R2	RL	R1	R2	RL
	original	306.5k	34.48	14.73	28.93	32.94	13.46	27.60
	medium	30.65k	30.63	11.38	25.31	30.15	11.10	25.05
XL-Sum	small	3065	27.27	8.91	22.27	27.32	8.79	22.20
	tiny	307	24.10	6.52	19.38	24.29	6.41	19.50
	micro	31	19.69	4.26	15.73	20.74	4.65	16.45
BookSum	111	.6k	20.27	4.01	15.50	20.22	3.95	15.57

si 26.95 13.51 22.36 25.68 12.69 2

 Table 5. Results for low-resource multilingual summarization on XL-Sum.

Results for Task Transfer

In addition to experiments with the fine-tuning paradigm on the subject of language and domain adaption, we also experiment with adapting a news summarization model to dialogue summarization. We report the experiment results in Table 6.

Task	Data Size	Model	R1	R2	RL
DialogSum	12.5k	BART-FT	47.40	24.66	39.03
DialogSum	IZ.JK	BART-Adapt	47.24	24.57	38.56
SAMSum	14.7k	BART-FT	49.52	24.91	40.64
JAMJUII	L4./K	BART-Adapt	49.38	24.69	40.99

Table 6. Results for task adaption from CNN/Daily Mail to DialogSum and SAMSum.

Effect of Data Availability on Performance

We observe that the amount of training data affects the performance gap between the two fine-tuning and adapters. We plot the percentage change in ROUGE performance (between those of fine-tuning and those of adapters) against the training size (log-scale) in Figure 3.

 \approx 20

Table 1. Results for domain adaptation from CNN/Daily Mail to XL-Sum/BookSum.

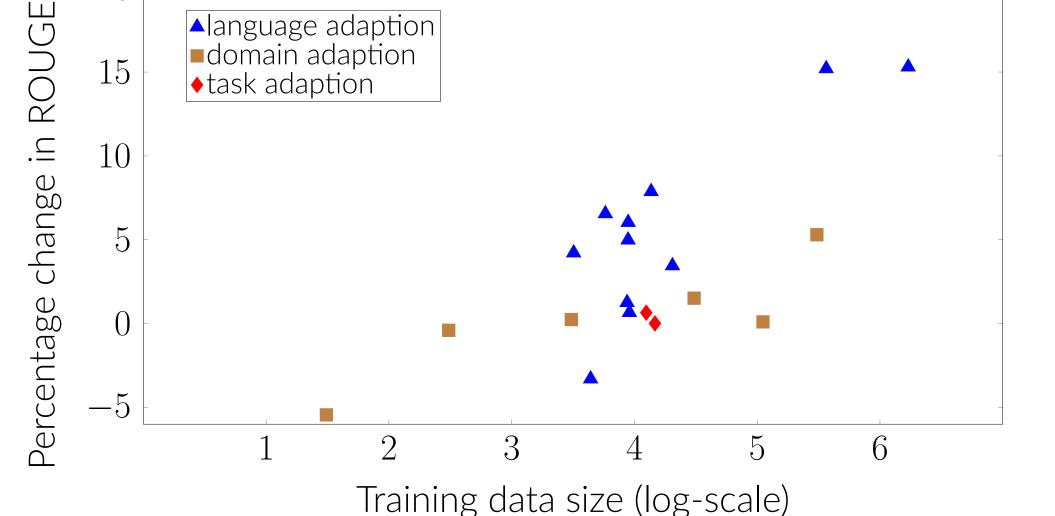


Figure 3. The effect of the training data size on ROUGE difference between the fine-tuning and adapter strategy.

Acknowledgement

Zheng Zhao is supported by the UKRI Centre for Doctoral Training in Natural Language Processing (grant EP/S022481/1). Pinzhen Chen is supported by a donation to Kenneth Heafield. This work reflects the view of the authors, and not necessarily that of the funders.